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Abstract—Detection of whispered speech in the presence of
high levels of background noise has applications in fraudulent
behaviour recognition. For instance, it can serve as an indicator
of possible insider trading. We propose a deep neural network
(DNN) -based whispering detection system, which operates on
both magnitude and phase features, including the group delay
feature from all-pole models (APGD). We show that the APGD
feature outperforms the conventional ones. Trained and evaluated
on the collected diverse dataset of whispered and normal speech
with emulated phone line distortions and significant amounts
of added background noise, the proposed system performs with
accuracies as high as 91.8%.

I. INTRODUCTION

Whispering is a form of speech, whose production does
not involve vibration of vocal cords. As opposed to normal
speech with harmonic excitation, whispering is produced with
a broad-band noise. Due to the differences in their production,
normal and whispered speech signals differ noticeably. How-
ever, in the presence of background noise the signal-to-noise
ratio of whispered speech can be so low that its automatic
detection becomes challenging.

A good example of an industrial application of whispering
detection is within a system that provides indicators of poten-
tial insider trading. Many enterprises are concerned about their
information security and therefore are interested in detecting
its breaches. Insider trading is just one of the forms of such
breaches, and it refers to the misuse and trading of confidential
information about the company by the individuals with access
to that information. Such activity is illegal in many countries.

Whispering during a phone call on the trading floor of a
capital markets business is unusual behaviour that can serve
as an indicator of possible insider trading activity. Companies
providing solutions for identifying these possible security
breaches (e.g. Behavox, http://behavox.com) are inter-
ested in detecting segments of a phone call conversation that
contain whispering in order to incorporate this information
into a broad multi-modal social connection analysis system.

Whispering detection has other applications as well. For
instance, lifelogging solutions can incorporate audio-based
user activity detection that could distinguish among others
speaking and whispering in order to capture connotations
of speech [1]. Detecting whether the speech is produced

normally or by whispering is also useful in automatic speech
recognition [2], where different models can be selected based
on the output of the predictor.

Previously, methods for detecting whispered speech in the
presence of normal phonation were proposed for noise-free
signals with use of unsupervised techniques operating on en-
ergy and periodicity features [3]. Another method [2] employs
GMM-based detection of vocal effort (including whispering,
soft, normal and loud) trained on MFCCs and spectral tilt
features in presence of rather insignificant amount of noise
(SNR 20 dB) in order to facilitate model selection for speech
recognition. With activity detection application in mind, Yatani
and Truong [1] have addressed recognition of whispering and
other modes of vocalisation along with other human activities
observed from clean noiseless audio with a set of temporal,
spectral and cepstral features and Support Vector Machines.

In this paper, we focus whispering detection in realistic
conditions with significant amount of background noise —
a problem not addressed previously. We propose to perform
the detection whispered speech recorded over a phone line
in an office environment by means of deep neural networks
(DNN) trained on the phase- and magnitude-based features,
shown to be applicable for speech processing. We perform the
detection of whispering against both normal speech and pauses
filled with only the background noise.

The paper is organised as follows. The implementation
details of the DNN-based classifier are outlined in In Sec-
tion II, along with the proposed set of features motivated by
previous studies in whispered speech production. Thereupon,
in Section III we present the whispered vs. non-whispered
speech corpus collected for this work. The system is thereupon
evaluated in Section IV, followed by conclusions in Section V.

II. METHODOLOGY

A. Problem definition

We address the problem of detecting whispered speech
segments from a continuous audio recorder over a phone
line in a realistic office scenario. The audio signal contains
both normal and whispered speech, as well as noise-filled
pauses when the person on the phone was not producing any
speech. The office environment introduces significant levels of



added background noise, and the recording is corrupted with
distortions as a result of compression in the cellular phone
channel.

We formulate the whispering detection as a classification
problem, where acoustic features are extracted from short
audio segments, and each segment is classified to either
whispering or non whispering using a supervised classifier.
The task is to develop a system that detects segments of
whispered speech from the recording and outputs their timing.
The system is developed to include state-of-the-art features and
machine learning methodology.

B. Features

Due to the noisy and distorted nature of the realistic data
and dynamic range variations, a simple energy thresholding or
similar techniques are not applicable for whispering detection,
as became apparent in the initial experiments. Instead, a set
of spectral features, which incorporate both the magnitude and
the phase, shown to be important for speech analysis, is pro-
posed based on previous studies and preliminary experiments:

• all-pole group delay [4]: 15 APGD coefficients with
first derivatives, LPC order 18. The main aspect of the
method is to calculate the group delay function from all-
pole models of a signal, formed by linear prediction.
The method has been used in formant extraction and
speaker recognition [4]. Recently, the feature has been
shown to work well within the DNN framework [5].
Changes in vocal effort have been shown to affect the first
formant of the speech signal [6], and the APGD feature is
well suited for describing formant variations. Studies of
whispered speech production [7], [8], [9] have made ob-
servations on upward shift in the resonance frequencies of
whispered vowels, lower energy in linguistically voiced
consonants, and greater spectral flatness in whispered
speech compared with normal speech. Motivated both
by the differences in spectrum of whispered and normal
speech in general and the importance of incorporating
phase part of the spectrum into speech analysis, we
propose the APGD feature as part of the whispering
detection system.

• MFCCs, 40 coefficients including the zeroth, 128 mel
bands, motivated by their shown universal applicability
for audio analysis in various applications.

• spectral centroid and
• spectral bandwidth, shown to produce some improve-

ment in the preliminary experiments.
With the all aforementioned features, the following frame-

blocking parameters are used: window length 2048 samples,
window hop 512 samples. The features are combined by
means of frame-wise concatenation. The extraction of all the
features except for APGD was performed using the LibROSA
package [10].

Also the following features were studied within the frame-
work: spectral rolloff, coefficients of fitting an polynomial to
the columns of a spectrogram, zero crossing rate, chromagram,
RMS energy. These have shown suboptimal results in the

preliminary experiments and are excluded from the primary
evaluation set up.

An option of incorporating context information into training
is foreseen by means of stacking the features of the variable
number of consecutive frames from the continuous signal of
the same class. In addition to the added temporal information
into training, this measure also aids in reducing the negative
effect of pauses between words in the data, which are anno-
tated as a part of larger-scale whispered segment.

C. Classifier

The primarily proposed classification methodology is based
on deep neural networks. For each time frame t, a feature
vector xt is used as a learning instance for the DNN. The
target output vector for each frame yt is a binary vector with
elements determined from the annotations as

yt =

{
1, whispering is observed in frame t,

0, no whispering is observed in frame t.
(1)

With the help of the hierarchical topology of the DNN, high-
level features are implicitly learned in the higher-level hidden
layers. This makes it possible to model the vastly non-linear
relationships between the input and the output.

The multi-label DNN architecture is composed of an input
layer with the number of units equal to the input vector size,
two or more hidden layers and an output layer with 2 units
for the considered binary case. For each layer k, the outputs
hk are calculated from the weighted sum of the outputs from
the previous layer k − 1, starting from h0 = x and

gk = Wkhk−1 + bk, 1 ≤ k < M, (2)

hk = f(gk), (3)

where W ∈ RD×S is the weight matrix between layers k − 1
and k, D and S are the number of units for layers k − 1
and k respectively, b ∈ RS is the bias vector for layer k,
f(·) is the nonlinear activation function for layer k and M is
the total number of layers. For the hidden layer activation
functions, maxout is used [11], and for the output layer
activation function, softmax is used. Mean squared error cost
function is chosen during the training of the DNN. In the
classification stage, the prediction vector is binarised with an
initial threshold 0.5 to obtain a binary detection estimation
vector.

The implementation of the used DNN framework
is a Theano-based [12] pylearn2 library [13]
with a scikit-learn [14]-compatible interface
scikit-neuralnetwork.

With a prior assumption of the variations between whis-
pered and normal speech happening relatively slowly, the
possible short abrupt changes in the outputs of the DNN
are safely eliminated by means of post-processing. A simple,
median filtering -based approach is applied. For each binary
detection estimation zt(l), the post-processed estimation z̃t(l)
is obtained by taking a median of the previous 47 frames,



spanning 3 seconds. This effectively filters out the short bursts
of detections.

The following parameters were set to the proposed systems.
Two hidden layers (reasoned as being deep but not overly
complicated) with 50 units each (selected as a reasonable
value between the dimensions of the input and output) were
learnt. Due to moderately large amount of training data, the
learning rate was set to 0.001, and the training was terminated
after 200 iterations. The validity of these values was briefly
confirmed in preliminary tests on data, similar to the one
used in evaluation, but different. The training of the system is
computationally relatively light, possible to perform within 6
hours on a consumer-level desktop given at least 16 GB RAM.

Alternatively to the DNNs, such conventional classifiers as
decision trees, Gaussian mixture model (GMM), random forest
classifier, and Linear Support Vector Classification (LSVC)
were included into the system as well, and their performance
is compared to the DNNs’ in the evaluation. After a brief
preliminary parameter search, a value of 40 mixture compo-
nents per class model has been set for training the GMMs.
The random forest classifier consisted of ten trees.

III. ACOUSTIC DATA

For this work, we collected a whispered vs. non-whispered
speech corpus. It consists of four hours of audio recordings
of diverse non-monotonous speech. The audio signals of 20
minutes each were obtained from 42 people pronouncing
scripted English phrases in an dialogue scenario. The high
quality audio signals were collected in a controlled noise-
free low reverberation environment. We simulated telephone
quality office speech by adding background noise artificially
and encoding the signals with a speech codec.

As the text data, a set of modified Harvard sentences [15]
was used. The sentences are phonetically balanced sample
English phrases. The scripts were structured into six sets,
each of which was divided into three identical subsets (for
each vocal effort class: normal speech, loud whispering, quiet
whispering), and each subset was further subdivided into
two collections: 10 sentences where the first speaker asks a
question and the other answers, and 10 sentences the other way
around. The scripts contained markings of whether a sentence
needs to be uttered normally, by whispering loudly (with
the instruction: “as if you were whispering on the phone”),
and whispered quietly (“as if you were whispering in quiet
conditions”), accompanied by a note on the desired intonation
(question, answer). The latter aspect is incorporated in order
to facilitate naturalness of the emulated conversation.

The recording was performed as follows. Forty-two vol-
unteers (18 females and 24 males) of various nationalities
with confident English language skills were recruited. The
recording was performed in a controlled environment: a noise-
free acoustically treated room of dimensions 4.53×3.96×2.59
m with low reverberation (T60 = 0.26 s). In each session, two
participants with wearable microphones within 5 cm from the
mouth were positioned within a distance of two meters from

TABLE I
MEASURED AVERAGE SDR VALUES OF THE SPEECH CLASSES IN THE

CORPUS WITH ADDED OFFICE NOISE.

Speech type Average SDR, dB

normal -4.7
loud whispering -5.0
quiet whispering -7.9

each other. Thereupon, they acted out the provided scripts, and
the average target conversation was of length 20 minutes.

Each speaker was recorded with two microphones: a lavalier
condenser AKG C 520 and a clip-on Sennheiser MKE 2 P -
C. The signals were fed into a RME UFX preamplifier and
digitised in the format WAV PCM16, mono, 44.1kHz. The
recordings were thereupon manually annotated in terms of
timings of the uttered sentences and the corresponding vocal
efforts.

Based on the clean corpus, its version with emulated real-
life phone call conditions was generated by means of pre-
processing. Randomly selected segments of background noise
from the office environment from the IEEE AASP DCASE
2013 Challenge [16], Scene Classification task, were mixed
into the recordings. The levels of both the noise and the clean
data were kept original, so that the resulting signal-to-noise
ratio is different for signals of different levels. This was done
in order to preserve the differences of dynamics of whispered
and non-whispered speech, which is in line with the expected
real-life use case. The levels of added noise were perceptually
confirmed to be adequate to the realistic case. Additionally,
the phone line channel effects were emulated by means of
GSM coder and decoder using the SoX implementation [17].
After adding the noise and channel distortions, the following
average signal-to-distortion (SDR) ratios were measured for
the whole corpus, see Table I.

The low levels of SDR are both due to the added noise
and the significant degradation introduced by the GSM codec.
The difference of SDR values between classes of speech
was apparent also by perceptual investigation: the quietly
whispered speech is indistinguishable under the noise floor. In
the development stage, only the normal speech and loud whis-
pering cases were therefore considered. A matched amount of
purely background noise data is added to the dataset so that
whispering is to be detected against both normal speech and
pauses filled with background noise.

IV. EVALUATION

This section presents the details of the evaluation of the
proposed system with the metrics used, the details on the data
splits as well as the obtained results.

A. Metrics and datasets

As evaluation metrics, two primary ones are considered:
frame-wise and block-wise accuracy. For frame-wise evalua-
tion, the performance of the system is measured as the number
of correctly classified frames relative to the total number of



TABLE II
COMPARISON OF THE FEATURES EVALUATED WITH THE DECISION TREES

CLASSIFIER.

Feature Frame
acc.

Block
acc.

F1 Prec. Rec.

APGD 72.3 91.7 62.7 0.65 0.60
MFCCs 71.0 88.2 60.3 0.62 0.59
APGD+MFCCs+centr.+bw 73.5 89.6 63.9 0.66 0.62
Spectral centroid 56.8 67.3 41.0 0.42 0.40
Spectral bandwidth 57.2 65.1 40.3 0.40 0.40
Spectral rolloff 65.4 68.0 40.9 0.34 0.52
Poly features 59.5 68.7 43.2 0.43 0.43
Zero crossing rate 64.1 64.4 8.0 0.04 0.46
Chromagram 57.3 70.3 43.7 0.46 0.41
RMSE 57.6 64.8 39.9 0.39 0.40

frames in the test subset. While being straightforward, this
measure suffers from a natural drawback: when a sentence is
annotated to be of continuously whispered speech, the pauses
between the words are erroneously annotated, if considered
frame-wise.

As an alternative, a block-wise measure is considered, which
uses a sliding median window of length 3 seconds. Within a
window, a majority vote over the predicted labels is performed,
producing a single label for a block. The accuracy is then
calculated as a ratio of correctly classified blocks to the total
number of blocks within the test subset. Due to the use of
median filtering, if the pauses are shorter than half of the
block length, they are expectedly filtered out. Additionally,
such measures as precision, recall and F1 score were used in
the evaluation.

For a fair estimate of the performance of the system, the
noisy and distorted version of the collected corpus is split into
training and test subset while making sure that no recording
of the same speaker is present in both subsets. That is, the
division into training and test subsets is performed in terms
of speakers. The gender proportion is preserved by means
of performing splits with the same ratio for each gender
separately. The split is done randomly, however, with a fixed
seed in order to preserve comparability of the results given
rapid development scenario. The proportions of the split are
70/30 for training/testing.

The evaluations were performed with the goals of obtaining
optimal feature sets, their parameters, the comparison of
classifiers and more thoroughly the parameters of the proposed
DNN-based set up.

B. Features

The feature comparison evaluation was performed at the
initial development stage, and decision trees were used as a
classifier. The evaluated features were all the features used
during the development of the system: all-pole group delay,
MFCCs, spectral centroid, spectral bandwidth, spectral rolloff,
coefficients of fitting an polynomial to the columns of a
spectrogram, zero crossing rate, chromagram, RMS energy.
The results are presented in Table II.

TABLE III
COMPARISON OF THE CLASSIFIERS WITH THE APGD+ MFCCS +

CENTROID + BANDWIDTH FEATURES.

Feature Frame
acc.

Block
acc.

F1 Prec. Rec.

DNN 84.0 94.5 78.1 0.80 0.76
GMM 77.5 92.1 70.2 0.74 0.66
Decision tree 73.5 89.6 63.9 0.66 0.62
Random forest 79.9 87.0 68.8 0.62 0.77
SVM, linear kernel 80.6 88.0 69.7 0.63 0.79

Based on these experiments, we select the APGD + MFCCs
+ centroid + bandwidth feature combination, which manages
to incorporate the important spectral information both from
magnitude and phase points of view. Further evaluations are
performed with this fixed feature set.

C. Classifiers

The comparison was performed between the conventional
(decision trees, GMM, SVM) and state-of-the-art (DNN) clas-
sifiers. As features, the best performing combination in terms
of frame-wise accuracy was selected based on the feature-wise
evaluations. For DNN, the initial architecture of two hidden
layers with 50 units each and no context-aware training was
used.

The evaluation results are presented in Table III. Indeed,
even though the dataset is only moderately large, the proposed
DNN architecture manages to outperform the conventional
classifiers. Further experiments were performed within the
DNN set up in order to find number of hidden units, and values
of 30-50 neurons per hidden layer within the two hidden layers
set up were shown to perform best.

The value also is in line with the popular rule-of-thumb for
selecting number of hidden units between the dimension of
the features (72) and dimension of the output. For the final
implementation, the value for the number of neurons in each
of the hidden layers is set to 50.

D. Context-aware training of the DNN

The effect of incorporating context information by means
of concatenating consecutive frames was studied in this ex-
periments. The size of context is set in frames, each of hop
64 ms given the sampling rate (8 kHz) and frame blocking
(hop 512 samples) of the noisy and corrupted version of the
dataset. The evaluation results with different context lengths
are presented in Table IV.

We observe a noticeable performance boost when increasing
the span of the context in the training. A possible explanation
is the fact, that the training data contains pauses between
words, which are coarsely annotated as whispering. When
incorporating several frames into a training vector, the chances
of whispering being present somewhere in that sample in-
crease, therefore the classifier is more likely to get trained
on data which always contains some whispering. For the non-
whispering class, this does not hold, since the corresponding
data certainly does not contain any whispering whatsoever.



TABLE IV
EFFECT OF INCORPORATING CONTEXT BY MEANS OF CONSECUTIVE

FRAMES INTO THE TRAINING OF DNN.

Context size,
frames

Frame
acc.

Block
acc.

F1 Prec. Rec.

0 84.0 94.5 78.1 0.80 0.76
5 87.4 94.1 82.2 0.81 0.83
10 89.4 93.5 85.6 0.88 0.83
20 91.7 94.6 88.5 0.89 0.88
30 91.8 93.8 88.6 0.90 0.88

From these observations we conclude, that a context span of
a length comparable to the expected length of a whispered
phrase is a reasonable choice. Thirty frames with the default
set up stand for approximately two seconds of speech and is
expectedly a good value. Given sufficient resources, setting the
context span up to 30 frames is reasonable, however, further
increase stands for less realistic long sentences of whispering.

V. CONCLUSIONS

A DNN-based whispered speech detection system was im-
plemented. A set of optimal phase- and magnitude-based fea-
tures was proposed. A moderately large corpus of whispered
and non-whispered speech was collected. A network archi-
tecture, capable of successfully incorporating large amounts
of training data and achieving good generalisation capabilities
and real-life functionality has been proposed. The extensive
evaluations of the intermediate steps of the system as well
as the final set up justify the proposed architecture and show
impressive performance results of frame-wise accuracy 91.8%.

Further improvements in the future are foreseen. Most
importantly, incorporating the current state-of-the-art of neural
computation, namely, LSTM, as well as perform data augmen-
tation to further increase the amount and diversity of training
data appears worthwhile.
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